Linear-In-The-Parameters Oblique Least Squares (LOLS) Provides More Accurate Estimates of Density-Dependent Survival
نویسندگان
چکیده
Survival is a fundamental demographic component and the importance of its accurate estimation goes beyond the traditional estimation of life expectancy. The evolutionary stability of isomorphic biphasic life-cycles and the occurrence of its different ploidy phases at uneven abundances are hypothesized to be driven by differences in survival rates between haploids and diploids. We monitored Gracilaria chilensis, a commercially exploited red alga with an isomorphic biphasic life-cycle, having found density-dependent survival with competition and Allee effects. While estimating the linear-in-the-parameters survival function, all model I regression methods (i.e, vertical least squares) provided biased line-fits rendering them inappropriate for studies about ecology, evolution or population management. Hence, we developed an iterative two-step non-linear model II regression (i.e, oblique least squares), which provided improved line-fits and estimates of survival function parameters, while robust to the data aspects that usually turn the regression methods numerically unstable.
منابع مشابه
Correction: Linear-In-The-Parameters Oblique Least Squares (LOLS) Provides More Accurate Estimates of Density-Dependent Survival
[This corrects the article DOI: 10.1371/journal.pone.0167418.].
متن کاملNonlinear Parametric Identification of an IPMC Actuator Model
Ionic polymer metal composite is a class of electro-active polymers which are very attractive smart actuators due to its large bending deflection, high mechanical flexibility, low excitation voltage, low density, and ease of fabrication. These properties make IPMC a proper candidate for many applications in various fields such as robotics, aerospace, biomedicine, etc. Although the actuation beh...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملA Least Squares Approach to Estimating the Average Reservoir Pressure
Least squares method (LSM) is an accurate and rapid method for solving some analytical and numerical problems. This method can be used to estimate the average reservoir pressure in well test analysis. In fact, it may be employed to estimate parameters such as permeability (k) and pore volume (Vp). Regarding this point, buildup, drawdown, late transient test data, modified Muskat method, interfe...
متن کاملSome Modifications to Calculate Regression Coefficients in Multiple Linear Regression
In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016